Home » » EKSPONEN

EKSPONEN


  1. TINJAUAN ULANG SIFAT-SIFAT EKSPONEN


Kita masih ingat bahwa eksponen rasional am/n ( a є R & a > 0, m bilangan bulat, & n bilangan asli lebih dari 1 ) didefinisikan sebagai berikut :

am/n = ( n√ a )m = n√am

Sifat- sifat eksponen bilangan real :

Jika a & b bilangan real positif, beserta x & y bilangan real, maka berlaku hubungan :

  1. ax x ay = ax+y

  2. ( a x b )x = ax x bx

  3. ax : ay = ax-y

  4. ( a : b )x = ax : bx

  5. ( ax )y = ax × y

  6. (i) a-x = 1/ ax

(ii) ax = 1/ a-x


  1. FUNGSI EKSPONEN

Definisi :

Fungsi eksponen dgn bilangan pokok atau basis “a” adalah fungsi yg mempunyai bentuk umum :

f : x ax atau y = f(x) = ax, a > 0 & a ≠ 1

disebut fungsi eksponen dgn daerah asal bilangan real.


C. PERSAMAAN EKSPONEN

Definisi :

Persamaan eksponen adalah sebuah persamaan yg eksponennya mengandung peubah x & tidak menutup kemungkinan bilangan pokoknya juga mengandung peubah x.

  1. Sifat Operasi Bilangan Berpangkat Bulat

    1. am x an = am+n

    2. (am)n = (a)mn

    3. am/an = am-n

    4. (a x b )n = an x bn

    5. (a/b)n = an/bn


2. Sifat Operasi Bilangan Pangkat Rasional

Jika a,b,c є bilangan real & m,n,p,q є bilangan bulat positif, maka :

a. am/n . ap/q = am/n + p/q

b. (am/n)p/q = amp/nq

c. am/n : ap/q = am/n – p/q

d. (ab)m/n = am/n . bm/n

e. (a/b)m/n = am/n/bm/n


3. Persamaan Eksponen

Misalkan ada sebuah persamaan f(x) = 2x. Tentukan nilai x apabila f(x) = 8 !

Kita dapat menyelesaikannya dgn membentuk sebuah persamaan f(x) = 2x :

8 = 2x atau 2x = 8 atau 2x = 23

Persamaan yg memuat bentuk eksponen disebut persamaan eksponen.

Persamaan eksponen dapat berbentuk :

a. af(x) = 1

b. af(x) = ap

c. af(x) = ag(x)

d. af(x) = bf(x)

e. af(x) = bg(x)

f. [f(x)]f(x) = [f(x)]g(x)

a & b dinamakan bilangan pokok, a,b > 0 & a,b ≠ 1.

f(x) & g(x) adalah sebuah fungsi aljabar.


Persamaan eksponen dapat diselesaikan dgn menggunakan sifat-sifat persamaan eksponen. Sebelum mempelajari sifat-sifat tersebut sebaiknya kita tinjau kembali bilangan pangkat nol (a0).


Pengertian pangkat nol

Buat setiap a є bilangan real, maka :

a0 = 1

Keterangan : buat 00 tidak didefinisikan.


4. Sifat – sifat Fungsi Eksponen buat Menyelesaikan Persamaan Eksponen

  1. Sifat fungsi atau eksponen berbentuk af(x) = 1

Jika af(x) = dgn a > 0 & a ≠ 1, maka f(x) = 0

  1. Sifat fungsi atau eksponen berbentuk af(x) = ap

Jika af(x) = ap dgn a > 0 & a ≠ 1, maka f(x) = p

  1. Sifat fungsi atau persaman eksponen berbentuk af(x) = ag(x)

Jika af(x) = ag(x) dgn a > 0 & a ≠1 , makaa f(x) = g(x)

d. Sifat fungsi atau persamaan berbentuk af(x) = bf(x) (a≠b)

Jika af(x) = bf(x) dgn a,b > 0 a,b ≠ 1 beserta a ≠ b, maka f(x) = 0

e. Sifat fungsi atau persamaan eksponen berbentuk af(x) = bg(x)

Penyelesaian persamaan eksponen berbentuk af(x) = bg(x) dgn a,b>0 & a,b≠1 dapat diselesaikan dgn logaritma, yaiu log :

af(x) = log bg(x) atau f(x) log a = g(x) log b

f. Sifat fungsi persamaan eksponen berbentuk [U(x)]f(x) = [U(x)]g(x)

Jika [U(x)]f(x) = [U(x)g(x)] maka nlai x diperoleh dari :

  1. f(x) = g(x)

  2. U(x) = 1

  3. U(x) = 0, jika nilai x memenuhi syarat f(x) ≥ 0 & g(x) > 0

  4. U(x) = -1, jika nilai x memenuhi syarat f(x) & g(x) kedua-duanya ganjil atau kedua-duanya genap.



g. Sifat fungsi persamaan eksponen berbentuk A{af(x)}2 + B{af(x)} + C = 0

Himpunan penyelesaian dari persamaan eksponen A{af(x)}2 + B{af(x)} + C = 0 (a>0 & a≠1, A,B, & C bilangan real & A≠0) dapat ditentukan dgn cara mengubah persamaan eksponen itu ke dalam persamaan kuadrat.


D. PERTIDAKSAMAAN EKSPONEN

Definisi :

Pertidaksamaan Eksponen adalah pertidaksamaan yg eksponennya mengandung peubah x, & tidak menutup kemungkingan bilangan pokoknya juga mengandung peubah x.

Penyelesaian dari pertidaksamaan eksponen menggunakan sifat fungsi monoton naik & sifat fungsi monoton turun pada fungsi-fungsi eksponen baku.


Sifat Fungsi Monoton Naik (a>1)

  • Jika af(x)≥ag(x), maka f(x)≥g(x)

  • Jika af(x)≤ag(x), maka f(x)≤g(x)

Sifat Fungsi Monoton Turun (0<1)


Bentuk Pertidaksamaan Eksponen

Dari fungsi & persamaan eksponen, kita sekarang akan mempelajari pertidaksamaan eksponen. Adapun bentuk pertidaksamaan eksponen yg kita pelajari adalah pertidaksamaan eksponen dgn bilangan pokok yg sama.

af(x )… ag(x)

Keterangan :



CONTOH SOAL & PEMBAHASAN


Sederhanakanlah :

1. 251/3√6 x 251/6√6

Pembahasan :

251/3√6 x 251/6√6 = 251/3√6 + 1/6√6

= 25½ √6

= (25½)√6

= 5√6

2. (303 : 103) x 32

Pembahasan :

(303 : 103) x 32 = 33 x 32

= 35

3. (p6 x p-2)-0,5

Pembahasan :

(p6 x p-2)-0,5 = (p6 – 2)-1/2

= p-2


Tentukan himpunan penyelesaian setiap persamaan eksponen berikut.

4. 3 x - 4 = 1

Pembahasan :

3x - 4 = 1

3x - 4 = 30

x – 4 = 0

x = 4

Hp = {4}

5. 23x – 1 = √8 x + 1

Pembahasan :

23x – 1 = √8x + 1

23x – 1 = 23x + 3


3x – 1 = 3x + 3


.6x – 2 = 3x + 3

3x = 5

x = 5/3

Hp = {5/3}


6. 23x – 6 = 33x – 6

Pembahasan :

23x – 6 = 33x – 6

3x – 6 = 0

x = 2

Hp = {2}


7. 2 x -2x -15 =1

Pembahasan :

2x2 -2x -15 = 1

x2 -2x – 15 = 0

(x -5)(x +3) = 0

x1 = 5 atau x2 = -3

Hp = {5,-3}

8. 3x – 6x + 8 = 5x -6x +8

Pembahasan :

3x -6x + 8 = 5 x2 – 6x + 8

x2 – 6x + 8 = 0

(x - 2)(x - 4) = 0

x = 2 atau x = 4

Jadi, himpunan penyelesaiannya adalah {2,4}


9. 22x -12 . 2x + 32 = 0

Pembahasan :

22x – 12 . 2x + 32 = 0

(2x)2 – 12 . (2x) + 32 = 0

Misalkan 2x = y, maka persamaan (2x)2 – 12 . (2x) + 32 = 0 dapat dituliskan menjadi

y2 – 12y + 32 = 0

(y – 4)(y – 8) = 0

y = 4 atau y = 8

2x = 4

2x = 22

x = 2

2x = 8

2x = 23

x = 3

Jadi, himpunan penyelesaiannya adalah {2,3}



10. 5-2x + 2 + 74 . 5–x – 3 ≥ 0

Pembahasan :

5-2x + 2 + 74 .5–x - 3 ≥ 0

52(5–x)2 + 74 . 5–x -3 ≥ 0

25{(1/5)x)2 + 74 (1/5)x – 3 ≥ 0

Misalkan (1/5)x = y, sehingga pertidaksamaan 25{(1/5)x}2 + 74(1/5)x - 3 ≥ 0 dapat dinyatakan sebagai 25y2 + 74y – 3 ≥ 0.

25y2 + 74y – 3 ≥ 0

25 y2 + 75y – y – 3 ≥ 0

25y(y + 3) – 1(y + 3) ≥ 0

(y + 3)(25y – 1) ≥ 0

y ≤ -3 atau y ≥ 1/25

(1/5)x ≤ -3, tidak ada nilai x yg memenuhi.

(1/5)x ≥ 1/25

(1/5)x ≥ (1/5)2

x ≤ 2

Jadi, penyelesaian dari pertidaksamaan 5-2x + 2 + 74 . 5–x – 3 ≥ 0 adalah x ≤ 2.










DAFTAR PUSTAKA



Shulthan Habibi, Ravi M. 2005. Pelajaran Matematika Program Studi Ilmu Alam. Sukamaju Depok : Arya Duta

Wirodikromo, Sartono. 2006. Matematika buat SMA Kelas X11. Jakarta : Erlangga


Share this article :

0 komentar:

mobile ads

 
powered by Blogger